Séminaire CEMPI

Séminaire
Amphithéâtre Pierre Glorieux

Benjamin Doyon, King's College, Londres

Emergent hydrodynamics in integrable systems out of equilibrium

The hydrodynamic approximation is an extremely powerful tool to describe the behaviour of many-body systems such as gases. At the Euler scale (that is, when variations of densities and currents occur only on large space-time scales), the approximation is based on the idea of local thermodynamic equilibrium. However, integrable systems are well known not to thermalize in the standard fashion. The presence of infinitely-many conservation laws preclude Gibbs thermalization, and instead generalized Gibbs ensembles emerge. In this talk I will introduce the associated theory of generalized hydrodynamics (GHD), which applies the hydrodynamic ideas to integrable systems, with infinitely-many conservation laws. It describes the dynamics from inhomogeneous states and in inhomogeneous force fields, and is valid both for quantum systems such as experimentally realized one-dimensional interacting Bose gases and quantum Heisenberg chains, and classical ones such as soliton gases and classical field theory.


Partager sur X Partager sur Facebook